## Linear Operators: Spectral theory |

### From inside the book

Results 1-3 of 36

Page 1796

Technical Report no. 8 to the Office of Ordinance Research,

Berkeley (1955). Cafiero, F. 1. Criteri di compattezza per le successioni di

funzioni generalmente a variazione limitata, I, II. I. Atti Accad. Naz. Lincei. Rend.

Cl.Sci.

Technical Report no. 8 to the Office of Ordinance Research,

**Univ**. of California,Berkeley (1955). Cafiero, F. 1. Criteri di compattezza per le successioni di

funzioni generalmente a variazione limitata, I, II. I. Atti Accad. Naz. Lincei. Rend.

Cl.Sci.

Page 1849

Dissertation,

Ogasawara, T. 1. Compact metric Boolean algebras and vector lattices. J. Sci.

Hirosima

Hirosima

Dissertation,

**University**of Uppsala (1950). Math. Rev. 12, 108 (1951).Ogasawara, T. 1. Compact metric Boolean algebras and vector lattices. J. Sci.

Hirosima

**Univ**. Ser. A. 11, 125–128 (1942). 2. On Fréchet lattices, I. J. Sci.Hirosima

**Univ**. Ser.Page 1870

Sém. Math.

Poisson formula for the solution of the heat flow equation. Dissertation,

Minnesota, 1952. Titchmarsh, E. C. (see also Sears, D. B.) 1. The theory of

functions.

Sém. Math.

**Univ**. Lund no. 4, 1939. Tingley, A. J. 1. A generalization of thePoisson formula for the solution of the heat flow equation. Dissertation,

**Univ**. ofMinnesota, 1952. Titchmarsh, E. C. (see also Sears, D. B.) 1. The theory of

functions.

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

BAlgebras | 859 |

Bounded Normal Operators in Hilbert Space | 887 |

Spectral Representation | 909 |

Copyright | |

17 other sections not shown

### Other editions - View all

### Common terms and phrases

adjoint extension adjoint operator algebra Amer analytic B-algebra Banach Borel set boundary conditions boundary values bounded operator closed closure Cº(I coefficients complete complex numbers continuous function converges Corollary deficiency indices Definition denote dense differential equations Doklady Akad domain eigenfunctions eigenvalues element essential spectrum exists finite dimensional follows from Lemma follows from Theorem follows immediately formal differential operator formally self adjoint formula Fourier function f Haar measure Hence Hilbert space Hilbert-Schmidt operator identity inequality integral interval kernel Lemma Let f linear operator linearly independent mapping Math matrix measure Nauk SSSR N.S. neighborhood norm open set operators in Hilbert orthogonal orthonormal Plancherel's theorem positive Proc PRoof prove real numbers satisfies sequence singular ſº solution spectral spectral set spectral theory square-integrable subspace Suppose theory To(r topology transform unique unitary vanishes vector zero