Linear Operators: Spectral theory |
From inside the book
Results 1-3 of 78
Page 1085
0 A ( -1 ) " det n ! n - 1 n - 1 48 ( Fredholm Determinant Series ) Let the hypotheses of the preceding exercise be satisfied , and suppose that the Hilbert space of that exercise is L2 ( S , E , u ) , where ( S , E , u ) is a positive ...
0 A ( -1 ) " det n ! n - 1 n - 1 48 ( Fredholm Determinant Series ) Let the hypotheses of the preceding exercise be satisfied , and suppose that the Hilbert space of that exercise is L2 ( S , E , u ) , where ( S , E , u ) is a positive ...
Page 1419
By the preceding lemma , -f ( t ) < fi ( t ) in [ si + 1 , mi + 1 ] . ... To prove the corollary it suffices to make the change of variable t + -t in the preceding corollary . Q.E.D. PROOF OF THEOREM 24. If the function q of Theorem 24 ...
By the preceding lemma , -f ( t ) < fi ( t ) in [ si + 1 , mi + 1 ] . ... To prove the corollary it suffices to make the change of variable t + -t in the preceding corollary . Q.E.D. PROOF OF THEOREM 24. If the function q of Theorem 24 ...
Page 1425
It follows from the preceding lemma that there exists a constant k such that for all t in [ a , c ) , [ * ] k max \ | ( s ) > max f ' ( s ) l . asssim اک 8 که ass Sim Indeed , if this were not the case , then to every integer m we could ...
It follows from the preceding lemma that there exists a constant k such that for all t in [ a , c ) , [ * ] k max \ | ( s ) > max f ' ( s ) l . asssim اک 8 که ass Sim Indeed , if this were not the case , then to every integer m we could ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
8 | 876 |
859 | 885 |
extensive presentation of applications of the spectral theorem | 911 |
Copyright | |
44 other sections not shown
Other editions - View all
Common terms and phrases
additive adjoint adjoint operator algebra analytic assume basis belongs Borel set boundary conditions boundary values bounded called clear closed closure commutative compact complex Consequently consider constant contains converges Corollary corresponding defined Definition denote dense determined domain eigenvalues elements equal equation equivalent Exercise exists extension fact finite dimensional follows follows from Lemma formal differential operator formula function given Hence Hilbert space Hilbert-Schmidt ideal identity immediately implies independent inequality integral interval invariant isometric isomorphism Lemma limit linear Ly(R mapping matrix measure multiplicity neighborhood norm obtained orthonormal positive preceding present projection proof properties prove range regular representation respectively restriction result satisfies seen sequence shown shows solutions spectral spectrum square-integrable statement subset subspace sufficient Suppose symmetric Theorem theory topology transform uniformly unique unit unitary vanishes vector zero