Linear Operators: Spectral theory |
From inside the book
Results 1-3 of 60
Page 1792
Amer . Math . Soc . 9 , 373–395 ( 1908 ) . 4 . Existence and oscillation theorems for a certain boundary value problem . Trans . Amer . Math . Soc . 10 , 259–270 ( 1909 ) . 5 . Quantum mechanics and asymptotic series . Bull . Amer .
Amer . Math . Soc . 9 , 373–395 ( 1908 ) . 4 . Existence and oscillation theorems for a certain boundary value problem . Trans . Amer . Math . Soc . 10 , 259–270 ( 1909 ) . 5 . Quantum mechanics and asymptotic series . Bull . Amer .
Page 1797
Amer . J. Math . 78 , 282–288 ( 1956 ) . 4 . On the existence of certain singular integrals . Acta Math . 88 , 85–139 ( 1952 ) . 5 . On singular integrals . Amer . J. Math . 78 , 289-309 ( 1956 ) . 6 . Algebras of certain singular ...
Amer . J. Math . 78 , 282–288 ( 1956 ) . 4 . On the existence of certain singular integrals . Acta Math . 88 , 85–139 ( 1952 ) . 5 . On singular integrals . Amer . J. Math . 78 , 289-309 ( 1956 ) . 6 . Algebras of certain singular ...
Page 1844
Amer . Math . Soc . 46 , 482–489 ( 1940 ) . Munroe , M. E. 1 . Absolute and unconditional convergence in Banach spaces . Duke Math . J. 13 , 351-365 ( 1946 ) . 2 . Introduction to measure and integration .
Amer . Math . Soc . 46 , 482–489 ( 1940 ) . Munroe , M. E. 1 . Absolute and unconditional convergence in Banach spaces . Duke Math . J. 13 , 351-365 ( 1946 ) . 2 . Introduction to measure and integration .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
BAlgebras | 859 |
Miscellaneous Applications | 937 |
Compact Groups | 945 |
Copyright | |
44 other sections not shown
Other editions - View all
Common terms and phrases
additive adjoint operator algebra Amer analytic assume Banach spaces basis belongs Borel boundary conditions boundary values bounded called clear closed closure coefficients compact complex Consequently constant contains continuous converges Corollary corresponding defined Definition denote dense determined domain eigenvalues element equal equation essential spectrum evident Exercise exists extension finite follows formal differential operator formula function function f given Hence Hilbert space identity independent indices inequality integral interval Lemma limit linear mapping Math matrix measure multiplicity neighborhood norm obtained partial positive preceding present problem projection proof properties prove range regular remark representation respectively restriction result satisfies seen sequence singular solution spectral square-integrable statement subset subspace sufficiently Suppose symmetric Theorem theory topology transform unique vanishes vector zero