Linear Operators: Spectral theory |
From inside the book
Results 1-3 of 59
Page 1792
Amer . Math . Soc . 9 , 373–395 ( 1908 ) . 4 . Existence and oscillation theorems for a certain boundary value problem . Trans . Amer . Math . Soc . 10 , 259–270 ( 1909 ) . 5 . Quantum mechanics and asymptotic series . Bull . Amer .
Amer . Math . Soc . 9 , 373–395 ( 1908 ) . 4 . Existence and oscillation theorems for a certain boundary value problem . Trans . Amer . Math . Soc . 10 , 259–270 ( 1909 ) . 5 . Quantum mechanics and asymptotic series . Bull . Amer .
Page 1797
Amer . J. Math . 78 , 282–288 ( 1956 ) . 4 . On the existence of certain singular integrals . Acta Math . 88 , 85–139 ( 1952 ) . 5 . On singular integrals . Amer . J. Math . 78 , 289-309 ( 1956 ) . 6 . Algebras of certain singular ...
Amer . J. Math . 78 , 282–288 ( 1956 ) . 4 . On the existence of certain singular integrals . Acta Math . 88 , 85–139 ( 1952 ) . 5 . On singular integrals . Amer . J. Math . 78 , 289-309 ( 1956 ) . 6 . Algebras of certain singular ...
Page 1844
Amer . Math . Soc . 46 , 482-489 ( 1940 ) . Munroe , M. E. 1 . Absolute and unconditional convergence in Banach spaces . Duke Math . J. 13 , 351-365 ( 1946 ) . 2 . Introduction to measure and integration .
Amer . Math . Soc . 46 , 482-489 ( 1940 ) . Munroe , M. E. 1 . Absolute and unconditional convergence in Banach spaces . Duke Math . J. 13 , 351-365 ( 1946 ) . 2 . Introduction to measure and integration .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
8 | 876 |
859 | 885 |
extensive presentation of applications of the spectral theorem | 911 |
Copyright | |
44 other sections not shown
Other editions - View all
Common terms and phrases
additive adjoint adjoint operator algebra analytic assume basis belongs Borel set boundary conditions boundary values bounded called clear closed closure commutative compact complex Consequently consider constant contains converges Corollary corresponding defined Definition denote dense determined domain eigenvalues elements equal equation equivalent Exercise exists extension fact finite dimensional follows follows from Lemma formal differential operator formula function given Hence Hilbert space Hilbert-Schmidt ideal identity immediately implies independent inequality integral interval invariant isometric isomorphism Lemma limit linear Ly(R mapping matrix measure multiplicity neighborhood norm obtained orthonormal positive preceding present projection proof properties prove range regular representation respectively restriction result satisfies seen sequence shown shows solutions spectral spectrum square-integrable statement subset subspace sufficient Suppose symmetric Theorem theory topology transform uniformly unique unit unitary vanishes vector zero