## Linear Operators: Spectral operators |

### From inside the book

Results 1-3 of 72

Page 2305

8 , o ( L ) is the set of numbers dn = ( n + at B + 1 ) ( n + a + B ) , and each

eigenspace

immediately from Corollary 9 that L + B is a spectral operator for each bounded

operator ...

8 , o ( L ) is the set of numbers dn = ( n + at B + 1 ) ( n + a + B ) , and each

eigenspace

**corresponding**to these eigenvalues is one - dimensional . It followsimmediately from Corollary 9 that L + B is a spectral operator for each bounded

operator ...

Page 2341

This follows from ( 58 ) by an argument using Lemma 7 , which is similar to the

same way that the collection of all finite sums of projections Ecām ; T ) is

uniformly ...

This follows from ( 58 ) by an argument using Lemma 7 , which is similar to the

**corresponding**argument used in the discussion of Case 1A . It follows in thesame way that the collection of all finite sums of projections Ecām ; T ) is

uniformly ...

Page 2507

Faddeev shows that if H is the six - dimensional Laplacian , and V is a sum of

three multiplication operators ( each

body system ) , then the spectrum of H + V consists of the purely continuous ...

Faddeev shows that if H is the six - dimensional Laplacian , and V is a sum of

three multiplication operators ( each

**corresponding**to a twobody force in a three -body system ) , then the spectrum of H + V consists of the purely continuous ...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

SPECTRAL OPERATORS | 1924 |

An Operational Calculus for Bounded Spectral | 1941 |

Part | 1950 |

Copyright | |

9 other sections not shown

### Other editions - View all

### Common terms and phrases

adjoint operator analytic apply arbitrary assume B-space Banach space Boolean algebra Borel sets boundary conditions bounded bounded operator Chapter clear closed commuting compact complex consider constant contained continuous converges Corollary corresponding countably additive defined Definition denote dense determined differential operator discrete domain elements equation equivalent established example exists extension fact finite follows formal formula given gives Hence Hilbert space hypothesis identity inequality integral invariant inverse Lemma limit linear linear operator Math Moreover multiplicity norm positive preceding present problem projections PROOF properties proved range regular resolution resolvent respectively restriction Russian satisfies scalar type seen sequence shown shows similar spectral measure spectral operator spectrum subset subspace sufficiently Suppose Theorem theory topology unbounded uniform uniformly unique valued vector weakly zero