Linear Operators: General theory |
From inside the book
Results 1-3 of 70
Page 804
Perturbations of linear operators in Banach spaces . Arch . Math . 6 , 89-101 (
1955 ) . Rosenthal , A. ( see Hahn , H. , and Hartogs , F. ) Rosser , J. B. 1. Logic
for mathematicians . McGraw - Hill Co. , New York , 1953 . Rota , G. C. 1 .
Extension ...
Perturbations of linear operators in Banach spaces . Arch . Math . 6 , 89-101 (
1955 ) . Rosenthal , A. ( see Hahn , H. , and Hartogs , F. ) Rosser , J. B. 1. Logic
for mathematicians . McGraw - Hill Co. , New York , 1953 . Rota , G. C. 1 .
Extension ...
Page 810
Weak compactness in Banach spaces . Studia Math . 11 , 71-94 ( 1950 ) .
Skorohod , A. ( see Kostyučenko , A. ) Slobodyanskiï , M. G. 1. On estimates for
the eigenvalues of a self - adjoint operator . Akad . Nauk SSSR . Prikl . Mat . Meh .
Weak compactness in Banach spaces . Studia Math . 11 , 71-94 ( 1950 ) .
Skorohod , A. ( see Kostyučenko , A. ) Slobodyanskiï , M. G. 1. On estimates for
the eigenvalues of a self - adjoint operator . Akad . Nauk SSSR . Prikl . Mat . Meh .
Page 838
7 ( 266 ) remarks concerning , ( 382 ) Atom , in a measure space , IV . 9 . 6 ( 308 )
Automorphisms , in groups , ( 35 ) B - space ( or Banach space ) , basic
properties of , Chap . II definition , II . 3 . 2 ( 59 ) integration , Chap . III special B -
spaces ...
7 ( 266 ) remarks concerning , ( 382 ) Atom , in a measure space , IV . 9 . 6 ( 308 )
Automorphisms , in groups , ( 35 ) B - space ( or Banach space ) , basic
properties of , Chap . II definition , II . 3 . 2 ( 59 ) integration , Chap . III special B -
spaces ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
B Topological Preliminaries | 10 |
Algebraic Preliminaries | 34 |
Copyright | |
80 other sections not shown
Other editions - View all
Common terms and phrases
algebra Amer analytic applied arbitrary assumed B-space Banach Banach spaces bounded called clear closed compact complex condition contains continuous functions converges convex Corollary countably additive defined DEFINITION denote dense determined differential disjoint Doklady Akad element equation equivalent everywhere Exercise exists extension field finite follows function defined function f given Hence Hilbert space implies inequality integral interval isomorphism Lebesgue Lemma limit linear functional linear operator linear space mapping Math meaning measure space metric neighborhood norm operator positive measure problem Proc proof properties proved respect Russian satisfies scalar seen separable sequence set function Show shown sphere statement subset sufficient Suppose Theorem theory topological space topology transformations u-measurable uniform uniformly unique unit valued vector weak weakly compact zero