Linear operators. 2. Spectral theory : self adjoint operators in Hilbert Space |
From inside the book
Results 1-3 of 79
Page 1816
On a class of linear equations with symmetrizable operators . Doklady Akad . Nauk SSSR ( N. S. ) 91 , 1023-1026 ( 1953 ) . ( Russian ) Math . Rev. 13 , 881 ( 1954 ) . 3 . On the theory of symmetrizable operators with polynomial ...
On a class of linear equations with symmetrizable operators . Doklady Akad . Nauk SSSR ( N. S. ) 91 , 1023-1026 ( 1953 ) . ( Russian ) Math . Rev. 13 , 881 ( 1954 ) . 3 . On the theory of symmetrizable operators with polynomial ...
Page 1877
An application of Banach linear functionals to summability . Trans . Amer . Math . Soc . 67 , 59-68 ( 1949 ) . Wilder , C. E. 1 . Expansion problems of ordinary linear differential equations with auxiliary conditions at more ...
An application of Banach linear functionals to summability . Trans . Amer . Math . Soc . 67 , 59-68 ( 1949 ) . Wilder , C. E. 1 . Expansion problems of ordinary linear differential equations with auxiliary conditions at more ...
Page 1912
( See also Functional ) Linear manifold , ( 36 ) . ( See also Manifold ) Linear operator , ( 36 ) . ( See also Bspace ) Linear space , 1.11 normed , II.3.1 ( 59 ) . ( See also Bspace ) topological , 11.1.1 ( 49 ) Linear transformation ...
( See also Functional ) Linear manifold , ( 36 ) . ( See also Manifold ) Linear operator , ( 36 ) . ( See also Bspace ) Linear space , 1.11 normed , II.3.1 ( 59 ) . ( See also Bspace ) topological , 11.1.1 ( 49 ) Linear transformation ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Common terms and phrases
additive adjoint operator algebra analytic assume B-algebra basis belongs Borel set boundary conditions boundary values bounded called clear closed closure commutative compact complex Consequently consider constant contains converges Corollary corresponding defined Definition denote dense determined eigenvalues element equal equation Exercise exists extension fact finite dimensional follows formal formal differential operator formula function function f given Hence Hilbert space Hilbert-Schmidt ideal identity independent inequality integral interval isometric isomorphism Lemma limit linear matrix measure multiplicity neighborhood norm normal operator obtained orthonormal positive preceding present projection proof properties prove range regular representation respectively restriction result satisfies seen sequence shown shows solution spectral spectrum square-integrable statement subset subspace sufficient Suppose symmetric Theorem theory topology transform uniformly unique unit unitary vanishes vector zero