## Linear Operators: General theory |

### From inside the book

Results 1-3 of 32

Page 758

Uspehi Mat. Nauk (N.S.) 5, no. 6 (40), 102-135 (1950). (

254 (1952). Amer. Math. Soc. Translation no. 96 (1953). 2. On the deficiency

index of differential operators. Doklady Akad. Nauk SSSR (N. S.) 64, 151-154 (

1949).

Uspehi Mat. Nauk (N.S.) 5, no. 6 (40), 102-135 (1950). (

**Russian**) Math. Rev. 13,254 (1952). Amer. Math. Soc. Translation no. 96 (1953). 2. On the deficiency

index of differential operators. Doklady Akad. Nauk SSSR (N. S.) 64, 151-154 (

1949).

Page 777

(

theory. Mat. Sbornik N. S. 33 (75), 597-626 (1953). (

(1954). 9. The theory of self-adjoint extensions of semi-bounded Hermitian

operators ...

(

**Russian**) Math. Rev. 11, 670 (1950). 8. On the trace formula in perturbationtheory. Mat. Sbornik N. S. 33 (75), 597-626 (1953). (

**Russian**) Math. Rev. 15, 720(1954). 9. The theory of self-adjoint extensions of semi-bounded Hermitian

operators ...

Page 811

(

with infinite deficiency indices and their orthogonal extensions. Doldady Akad.

Nauk SSSR (N. S.) 87, 11-14 (1952). (

(

**Russian**. English summary) Math. Rev. 6, 270 (1045). 15. Isometric operatorswith infinite deficiency indices and their orthogonal extensions. Doldady Akad.

Nauk SSSR (N. S.) 87, 11-14 (1952). (

**Russian**) Math. Rev. 14, 882 (1953). 16.### What people are saying - Write a review

User Review - Flag as inappropriate

i want to read

### Contents

Preliminary Concepts | 1 |

B Topological Preliminaries | 10 |

Algebraic Preliminaries | 34 |

Copyright | |

79 other sections not shown

### Other editions - View all

### Common terms and phrases

a-field Acad additive set function algebra Amer analytic arbitrary B-space ba(S Banach spaces Borel sets ca(S Cauchy sequence compact operator complex numbers complex valued contains continuous functions continuous linear convex set Corollary countably additive Definition denote dense differential equations disjoint sets Doklady Akad Duke Math element equivalent everywhere exists extended real valued extension finite dimensional finite number function f Hausdorff space Hence Hilbert space homeomorphism inequality interval Lebesgue measure lim sup linear functional linear map linear operator linear topological space LP(S measurable functions measure space metric space Nauk SSSR N. S. neighborhood non-negative normed linear space null set open set operator topology positive measure space Proc Proof properties proved real numbers Riesz Russian semi-group sequentially compact Show simple functions subset subspace Suppose theory topological space Trans uniformly unique v(fi valued function Vber vector valued weakly compact