Linear Operators: General theory |
From inside the book
Results 1-3 of 31
Page 759
Doklady Akad . Nauk SSSR ( N . S . ) 31 , 428 - 432 ( 1941 ) . 2 . Biorthogonal
systems in Banach space . Doklady Akad . Nauk SSSR ( N . S . ) 47 , 75 - 78 (
1945 ) . 3 . Sur la théorie des systèmes biorthogonaux . Doklady Akad . Nauk
SSSR ...
Doklady Akad . Nauk SSSR ( N . S . ) 31 , 428 - 432 ( 1941 ) . 2 . Biorthogonal
systems in Banach space . Doklady Akad . Nauk SSSR ( N . S . ) 47 , 75 - 78 (
1945 ) . 3 . Sur la théorie des systèmes biorthogonaux . Doklady Akad . Nauk
SSSR ...
Page 781
Doklady Akad . Nauk SSSR ( N . S . ) 71 , 605 - 608 ( 1950 ) . ( Russian ) Math .
Rev . 11 , 720 ( 1950 ) . 4 . Proof of the theorem on the expansion in
eigenfunctions of self - adjoint differential operators . Doklady Akad . Nauk SSSR
( N . S . ) 73 ...
Doklady Akad . Nauk SSSR ( N . S . ) 71 , 605 - 608 ( 1950 ) . ( Russian ) Math .
Rev . 11 , 720 ( 1950 ) . 4 . Proof of the theorem on the expansion in
eigenfunctions of self - adjoint differential operators . Doklady Akad . Nauk SSSR
( N . S . ) 73 ...
Page 787
Pures et Appl . ( 9 ) 13 , 69 - 91 ( 1934 ) . Michlin ( Mihlin ) , C . G . 1 . On the
convergence of the Fredholm series . Doklady Akad . Nauk SSSR ( N . S . ) 42 ,
373 – 376 ( 1944 ) . Mikusinski , J . G . 1 . Sur certains espaces abstraits . Fund .
Math .
Pures et Appl . ( 9 ) 13 , 69 - 91 ( 1934 ) . Michlin ( Mihlin ) , C . G . 1 . On the
convergence of the Fredholm series . Doklady Akad . Nauk SSSR ( N . S . ) 42 ,
373 – 376 ( 1944 ) . Mikusinski , J . G . 1 . Sur certains espaces abstraits . Fund .
Math .
What people are saying - Write a review
User Review - Flag as inappropriate
i want to read
Contents
Metric Spaces | 19 |
Convergence and Uniform Convergence of Generalized | 26 |
Exercises | 33 |
Copyright | |
10 other sections not shown
Other editions - View all
Common terms and phrases
Acad algebra Amer analytic applied arbitrary assumed B-space Banach Banach spaces bounded called clear closed compact complex contains continuous functions converges convex Corollary countably additive defined DEFINITION denote dense determined differential disjoint Doklady Akad domain elements equation equivalent everywhere Exercise exists extension field finite follows function defined function f given Hence Hilbert space implies inequality integral interval isomorphism Lebesgue Lemma limit linear functional linear operator linear space mapping Math mean measure space metric space neighborhood norm operator positive problem Proc PROOF properties proved range regular respect Russian satisfies scalar seen semi-group separable sequence set function Show shown sphere statement subset Suppose Theorem theory topological space topology transformations u-integrable u-measurable uniformly union unique unit valued vector weak zero