## Linear Operators: Spectral theory |

### From inside the book

Results 1-3 of 98

Page 1210

Let T be a self adjoint operator in the Hilbert space L2 ( S , E , v ) where ( S , E , v

) is a positive

bounded on each set in an increasing sequence of sets of finite measure which ...

Let T be a self adjoint operator in the Hilbert space L2 ( S , E , v ) where ( S , E , v

) is a positive

**measure space**. Let every element in n - D ( T ” ) be v - essentiallybounded on each set in an increasing sequence of sets of finite measure which ...

Page 1900

... on continuity of limit function , IV.6.11 ( 268 ) remarks concerning , ( 383 )

Ascoli - Arzelą theorem , on compactness of continuous functions , IV.6.7 ( 266 )

remarks concerning , ( 382 ) Atom , in a

Automorphisms ...

... on continuity of limit function , IV.6.11 ( 268 ) remarks concerning , ( 383 )

Ascoli - Arzelą theorem , on compactness of continuous functions , IV.6.7 ( 266 )

remarks concerning , ( 382 ) Atom , in a

**measure space**, IV.9.6 ( 308 )Automorphisms ...

Page 1913

... continuous in B -

7.10 ( 694 ) discrete case in B -

in L. , VIII.5.9 ( 667 ) Mean Fubini - Jessen theorem , III.11.24 ( 207 )

...

... continuous in B -

**space**, VIII.7.1-3 ( 687-689 ) in Li , VIII.7.4 ( 689 ) in L » , VIII.7.10 ( 694 ) discrete case in B -

**space**, VIII.5.1-4 ( 661-662 ) in L1 , VIII.5.5 ( 662 )in L. , VIII.5.9 ( 667 ) Mean Fubini - Jessen theorem , III.11.24 ( 207 )

**Measurable**...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

BAlgebras | 859 |

Bounded Normal Operators in Hilbert Space | 887 |

Miscellaneous Applications | 937 |

Copyright | |

11 other sections not shown

### Other editions - View all

### Common terms and phrases

additive Akad algebra Amer analytic assume Banach spaces basis belongs Borel boundary conditions boundary values bounded called clear closed closure coefficients compact complex Consequently constant contains continuous converges Corollary corresponding defined Definition denote dense determined domain eigenvalues element equal equation essential spectrum evident Exercise exists extension finite follows formal differential operator formula function function f given Hence Hilbert space identity independent indices inequality integral interval Lemma limit linear mapping Math matrix measure multiplicity neighborhood norm obtained partial positive preceding present problem projection proof properties prove range regular remark representation respectively restriction result Russian satisfies seen sequence singular solution spectral square-integrable statement subset subspace sufficiently Suppose symmetric Theorem theory topology transform unique vanishes vector zero