Linear Operators: General theory |
From inside the book
Results 1-3 of 59
Page 302
This clearly is a partial ordering ( I . 2 . 1 ) in Lp . We now establish completeness
( 1 . 12 ) with respect to this ordering . 22 THEOREM . Let ( S , E , u ) be a positive
measure space . Then the real partially ordered space L ( S , £ , u ) , 1 p < oo ...
This clearly is a partial ordering ( I . 2 . 1 ) in Lp . We now establish completeness
( 1 . 12 ) with respect to this ordering . 22 THEOREM . Let ( S , E , u ) be a positive
measure space . Then the real partially ordered space L ( S , £ , u ) , 1 p < oo ...
Page 756
Dirichlet ' s problem for linear elliptic partial differential equations . Math . Scand .
1 , 55 – 72 ( 1953 ) . 3 . Le problème de Dirichlet pour les équations aux dérivées
partielles elliptiques linéaires dans des domaines bornés . C . R . Acad . Sci .
Dirichlet ' s problem for linear elliptic partial differential equations . Math . Scand .
1 , 55 – 72 ( 1953 ) . 3 . Le problème de Dirichlet pour les équations aux dérivées
partielles elliptiques linéaires dans des domaines bornés . C . R . Acad . Sci .
Page 819
... of linear partially ordered spaces . Doklady Akad . Nauk SSSR ( N . S . ) 58 ,
733 – 786 ( 1947 ) . ( Russian ) Math . Rev . 9 , 290 ( 1948 ) . The product in
linear partially ordered spaces and its application to the theory of operations , I .
Mat .
... of linear partially ordered spaces . Doklady Akad . Nauk SSSR ( N . S . ) 58 ,
733 – 786 ( 1947 ) . ( Russian ) Math . Rev . 9 , 290 ( 1948 ) . The product in
linear partially ordered spaces and its application to the theory of operations , I .
Mat .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
B Topological Preliminaries | 10 |
Algebraic Preliminaries | 34 |
Copyright | |
31 other sections not shown
Other editions - View all
Common terms and phrases
algebra Amer analytic applied arbitrary assumed B-space Banach spaces bounded called clear closed compact operator complex condition Consequently constant contains continuous functions converges convex convex set Corollary countably additive defined DEFINITION denote dense determined differential dimensional disjoint domain element equation equivalent everywhere Exercise exists extension field finite follows formula function defined function f given Hence Hilbert space identity implies inequality integral interval Lebesgue Lemma limit linear functional linear operator linear space Math neighborhood norm operator operator topology problem projection PROOF properties proved range reflexive representation respect satisfies scalar seen semi-group separable sequence set function Show shown statement subset subspace sufficient Suppose Theorem theory topology u-measurable uniform uniformly unique unit sphere valued vector weak weakly compact zero