Linear Operators: General theory |
From inside the book
Results 1-3 of 43
Page 776
( Russian . Latvian summary ) Math . Rev . 15 , 440 ( 1954 ) . Kračkovskii , S . N . ,
and Vinogradov , A . A . 1 . On a criterion of uniform convexity of a space of type B
. Uspehi Matem . Nauk 7 , no . 3 ( 49 ) 131 - 134 ( 1952 ) . ( Russian ) Math .
( Russian . Latvian summary ) Math . Rev . 15 , 440 ( 1954 ) . Kračkovskii , S . N . ,
and Vinogradov , A . A . 1 . On a criterion of uniform convexity of a space of type B
. Uspehi Matem . Nauk 7 , no . 3 ( 49 ) 131 - 134 ( 1952 ) . ( Russian ) Math .
Page 777
( Russian ) Math . Rev . 11 , 670 ( 1950 ) . On the trace formula in perturbation
theory . Mat . Sbornik N . S . 33 ( 75 ) , 597 - 626 ( 1953 ) . ( Russian ) Math . Rev .
15 , 720 ( 1954 ) . The theory of self - adjoint extensions of semi - bounded ...
( Russian ) Math . Rev . 11 , 670 ( 1950 ) . On the trace formula in perturbation
theory . Mat . Sbornik N . S . 33 ( 75 ) , 597 - 626 ( 1953 ) . ( Russian ) Math . Rev .
15 , 720 ( 1954 ) . The theory of self - adjoint extensions of semi - bounded ...
Page 794
Self - adjoint extensions of the second kind of a symmetric operator . Izvestiya
Akad . Nauk SSSR 4 , 53 – 104 ( 1940 ) . ( Russian . English summary ) Math .
Rev . 2 , 104 ( 1941 ) . 8 . Spectral functions of a symmetric operator . Izvestiya
Akad .
Self - adjoint extensions of the second kind of a symmetric operator . Izvestiya
Akad . Nauk SSSR 4 , 53 – 104 ( 1940 ) . ( Russian . English summary ) Math .
Rev . 2 , 104 ( 1941 ) . 8 . Spectral functions of a symmetric operator . Izvestiya
Akad .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
B Topological Preliminaries | 10 |
Algebraic Preliminaries | 34 |
Copyright | |
31 other sections not shown
Other editions - View all
Common terms and phrases
algebra Amer analytic applied arbitrary assumed B-space Banach spaces bounded called clear closed compact operator complex condition Consequently constant contains continuous functions converges convex convex set Corollary countably additive defined DEFINITION denote dense determined differential dimensional disjoint domain element equation equivalent everywhere Exercise exists extension field finite follows formula function defined function f given Hence Hilbert space identity implies inequality integral interval Lebesgue Lemma limit linear functional linear operator linear space Math neighborhood norm operator operator topology problem projection PROOF properties proved range reflexive representation respect satisfies scalar seen semi-group separable sequence set function Show shown statement subset subspace sufficient Suppose Theorem theory topology u-measurable uniform uniformly unique unit sphere valued vector weak weakly compact zero