## Linear Operators, Part 1 |

### From inside the book

Results 1-3 of 79

Page 802

The singular elements of a

1947 ) . 5 . Isomorphic groups of linear transformations . Amer . J . Math . 72 , 451

– 464 ( 1950 ) . 6 .

The singular elements of a

**Banach**algebra . Duke Math . J . 14 , 1063 - 1077 (1947 ) . 5 . Isomorphic groups of linear transformations . Amer . J . Math . 72 , 451

– 464 ( 1950 ) . 6 .

**Banach**algebras with an adjoint operation . Ann . of Math .Page 804

On a class of Markoff processes . Trans . Amer . Math . Soc . 71 , 120 - 135 ( 1951

) . Rosenbloom , P . C . 1 . Elements of mathematical logic . Dover Publications ,

New York , 1950 . 2 . Perturbations of linear operators in

On a class of Markoff processes . Trans . Amer . Math . Soc . 71 , 120 - 135 ( 1951

) . Rosenbloom , P . C . 1 . Elements of mathematical logic . Dover Publications ,

New York , 1950 . 2 . Perturbations of linear operators in

**Banach**spaces .Page 810

Weak compactness in

Skorohod , A . ( see Kostyučenko , A . ) Slobodyanskij , M . G . 1 . On estimates for

the eigenvalues of a self - adjoint operator . Akad . Nauk SSSR . Prikl . Mat . Meh .

Weak compactness in

**Banach**spaces . Studia Math . 11 , 71 - 94 ( 1950 ) .Skorohod , A . ( see Kostyučenko , A . ) Slobodyanskij , M . G . 1 . On estimates for

the eigenvalues of a self - adjoint operator . Akad . Nauk SSSR . Prikl . Mat . Meh .

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Preliminary Concepts | 1 |

B Topological Preliminaries | 10 |

Algebraic Preliminaries | 34 |

Copyright | |

25 other sections not shown

### Other editions - View all

### Common terms and phrases

algebra Amer analytic applied arbitrary assumed B-space Banach spaces bounded called clear closed compact operator complex condition Consequently constant contains continuous functions converges convex convex set Corollary countably additive defined DEFINITION denote dense determined differential dimensional disjoint domain element equation equivalent everywhere Exercise exists extension field finite follows formula function defined function f given Hence Hilbert space identity implies inequality integral interval Lebesgue Lemma limit linear functional linear operator linear space Math neighborhood norm obtained operator operator topology problem projection PROOF properties proved range reflexive representation respect satisfies scalar seen semi-group separable sequence set function Show shown statement subset subspace sufficient Suppose Theorem theory topology u-measurable uniform uniformly unique unit sphere valued vector weak weakly compact zero