Linear Operators: General theory |
From inside the book
Results 1-3 of 36
Page 770
Proc . Second Berkeley Symposium Math . Statistics and Prob . , 189–215 ( 1951 ) . Kaczmarz , S. , and Steinhaus , H. 1 . Theorie der Orthogonalreihen . Monografje Matematyczne , vol . 6 , Warsaw , 1935. Reprinted by Chelsea Pub .
Proc . Second Berkeley Symposium Math . Statistics and Prob . , 189–215 ( 1951 ) . Kaczmarz , S. , and Steinhaus , H. 1 . Theorie der Orthogonalreihen . Monografje Matematyczne , vol . 6 , Warsaw , 1935. Reprinted by Chelsea Pub .
Page 791
Proc . Japan Acad . 27 , 544-547 ( 1951 ) . Nakamura , M. , and Sunouchi , S. 1. Note on Banach spaces ( IV ) . On a decomposition of additive set functions . Proc . Imp . Acad . Tokyo 18 , 333-335 ( 1942 ) . Nakamura , M. , and Umegaki ...
Proc . Japan Acad . 27 , 544-547 ( 1951 ) . Nakamura , M. , and Sunouchi , S. 1. Note on Banach spaces ( IV ) . On a decomposition of additive set functions . Proc . Imp . Acad . Tokyo 18 , 333-335 ( 1942 ) . Nakamura , M. , and Umegaki ...
Page 821
Proc . Amer . Math . Soc . 3 , 643-646 ( 1952 ) . 3. An extension of the classical Sturm - Liouville theory . Duke Math . J. 22 , 1-14 ( 1955 ) . Weinstein , A. 1. Quantitative methods in Sturm - Liouville theory . Proc .
Proc . Amer . Math . Soc . 3 , 643-646 ( 1952 ) . 3. An extension of the classical Sturm - Liouville theory . Duke Math . J. 22 , 1-14 ( 1955 ) . Weinstein , A. 1. Quantitative methods in Sturm - Liouville theory . Proc .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
B Topological Preliminaries | 10 |
quences | 26 |
Copyright | |
81 other sections not shown
Other editions - View all
Common terms and phrases
Akad algebra Amer analytic applied arbitrary assumed B-space Banach Banach spaces bounded called clear closed compact complex condition Consequently contains continuous functions converges convex Corollary countably additive defined DEFINITION denote dense determined differential disjoint element equation equivalent everywhere Exercise exists extension field finite follows function defined function f given Hence Hilbert space implies inequality integral interval isomorphism Lebesgue Lemma limit linear functional linear operator linear space mapping Math meaning measure space metric neighborhood norm operator positive measure problem Proc Proof properties proved respect Russian satisfies scalar seen separable sequence set function Show shown sphere statement subset sufficient Suppose Theorem theory topological space topology u-measurable uniform uniformly unique unit valued vector weak weakly compact zero