## Linear Operators, Part 1 |

### From inside the book

Results 1-3 of 67

Page 762

Amer.

equations in Hilbert spaces. Soobséeniya Akad. Nauk Gruzin. SSR 13, 65–72 (

1952).

**Math**. Ann. 73, 371–412 (1913). Hanson, E. H. 1. A note on compactness. Bull.Amer.

**Math**. Soc. 39, 397–400 (1933). Harazov, D. F. 1. On a class of linearequations in Hilbert spaces. Soobséeniya Akad. Nauk Gruzin. SSR 13, 65–72 (

1952).

Page 790

Dines, L. L. 1. Convexity in a linear space with an inner product. Duke

520–534 (1939). 2. On the supporting-plane property of a conver body. Bull.

Amer.

**Math**. Ann. 125, 366–393 (1953). Moses, H. E. (see Kay, I.) Moskovitz, D., andDines, L. L. 1. Convexity in a linear space with an inner product. Duke

**Math**. J. 5,520–534 (1939). 2. On the supporting-plane property of a conver body. Bull.

Amer.

Page 797

2. A note on bilinear forms. Bull. Amer.

theorems on orthogonal functions. Studia

R. E. A. C., and Wiener, N. 1. Fourier transforms in the compler domain. Amer.

2. A note on bilinear forms. Bull. Amer.

**Math**. Soc. 39, 259-260 (1933). 3. Sometheorems on orthogonal functions. Studia

**Math**. 3, 226-238 (1931). Paley,R. E. A. C., and Wiener, N. 1. Fourier transforms in the compler domain. Amer.

**Math**. Soc.### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

A Settheoretic Preliminaries | 1 |

Convergence and Uniform Convergence of Generalized | 26 |

Algebraic Preliminaries | 34 |

Copyright | |

27 other sections not shown

### Other editions - View all

### Common terms and phrases

additive set function algebra Amer analytic arbitrary B-space Banach baſs Borel sets ca(S Cauchy sequence compact Hausdorff space compact operator complete complex numbers conditionally compact contains continuous functions convex set Corollary countably additive DEFINITION denote dense differential Doklady Akad element equation equivalent exists finite dimensional function defined function f g-field g-finite Hausdorff space Hence Hilbert space homeomorphism implies inequality integral interval isometric isomorphism Lebesgue measure Lemma Let f lim ſº linear map linear operator linear topological space Lp(S Math measurable functions measure space metric space Nauk SSSR N.S. neighborhood non-negative normed linear space open set operator topology positive measure space Proc properties proved real numbers Riesz scalar semi-group sequentially compact Show subset subspace Suppose theory TM(S topological space u-integrable u-measurable uniformly valued function weak topology weakly compact weakly sequentially compact zero