Linear Operators, Part 1 |
From inside the book
Results 1-3 of 55
Page 762
Math . Ann . 73 , 371-412 ( 1913 ) . Hanson , E. H. 1. A note on compactness .
Bull . Amer . Math . Soc . 39 , 397-400 ( 1933 ) . Harazov , D. F. 1. On a class of
linear equations in Hilbert spaces . Soobščeniya Akad . Nauk Gruzin . SSR 13 ,
65-72 ...
Math . Ann . 73 , 371-412 ( 1913 ) . Hanson , E. H. 1. A note on compactness .
Bull . Amer . Math . Soc . 39 , 397-400 ( 1933 ) . Harazov , D. F. 1. On a class of
linear equations in Hilbert spaces . Soobščeniya Akad . Nauk Gruzin . SSR 13 ,
65-72 ...
Page 790
Math . Ann . 125 , 366–393 ( 1953 ) . Moses , H. E. ( see Kay , I. ) Moskovitz , D. ,
and Dines , L. L. 1. Convexity in a linear space with an inner product . Duke Math
. J. 5 , 520-534 ( 1939 ) . 2. On the supporting - plane property of a convex body .
Math . Ann . 125 , 366–393 ( 1953 ) . Moses , H. E. ( see Kay , I. ) Moskovitz , D. ,
and Dines , L. L. 1. Convexity in a linear space with an inner product . Duke Math
. J. 5 , 520-534 ( 1939 ) . 2. On the supporting - plane property of a convex body .
Page 797
Math . Soc . 39 , 259-260 ( 1933 ) . 3 . Some theorems on orthogonal functions .
Studia Math . 3 , 226-238 ( 1931 ) . Paley , R. E. A. C. , and Wiener , N. 1. Fourier
transforms in the complex domain . Amer . Math . Soc . Colloquium Pub . no .
Math . Soc . 39 , 259-260 ( 1933 ) . 3 . Some theorems on orthogonal functions .
Studia Math . 3 , 226-238 ( 1931 ) . Paley , R. E. A. C. , and Wiener , N. 1. Fourier
transforms in the complex domain . Amer . Math . Soc . Colloquium Pub . no .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
The VitaliHahnSaks Theorem and Spaces of Measures | 7 |
B Topological Preliminaries | 10 |
Copyright | |
87 other sections not shown
Other editions - View all
Common terms and phrases
Akad algebra Amer analytic applied arbitrary assumed B-space Banach Banach spaces bounded called clear closed complex Consequently contains converges convex Corollary defined DEFINITION denote dense determined differential dimensional disjoint domain element equation equivalent everywhere Exercise exists extension field finite follows function defined function f given Hence Hilbert space identity implies inequality integral interval isomorphism Lebesgue Lemma limit linear functional linear operator linear space Math measure space metric space neighborhood norm open set positive measure problem projection Proof properties proved range reflexive representation respect Russian satisfies scalar seen separable sequence set function Show shown sphere statement subset Suppose Theorem theory topological space topology u-measurable uniform uniformly unique unit valued vector weak weakly compact zero