Linear Operators: General theory |
From inside the book
Results 1-3 of 55
Page 762
Math . Ann . 73 , 371-412 ( 1913 ) . Hanson , E. H. 1. A note on compactness . Bull . Amer . Math . Soc . 39 , 397-400 ( 1933 ) . Harazov , D. F. 1. On a class of linear equations in Hilbert spaces . Soobščeniya Akad . Nauk Gruzin .
Math . Ann . 73 , 371-412 ( 1913 ) . Hanson , E. H. 1. A note on compactness . Bull . Amer . Math . Soc . 39 , 397-400 ( 1933 ) . Harazov , D. F. 1. On a class of linear equations in Hilbert spaces . Soobščeniya Akad . Nauk Gruzin .
Page 790
Math . Ann . 125 , 366–393 ( 1953 ) . Moses , H. E. ( see Kay , I. ) Moskovitz , D. , and Dines , L. L. 1. Convexity in a linear space with an inner product . Duke Math . J. 5 , 520-534 ( 1939 ) . 2. On the supporting - plane property ...
Math . Ann . 125 , 366–393 ( 1953 ) . Moses , H. E. ( see Kay , I. ) Moskovitz , D. , and Dines , L. L. 1. Convexity in a linear space with an inner product . Duke Math . J. 5 , 520-534 ( 1939 ) . 2. On the supporting - plane property ...
Page 797
Math . Soc . 39 , 259-260 ( 1933 ) . 3 . Some theorems on orthogonal functions . Studia Math . 3 , 226-238 ( 1931 ) . Paley , R. E. A. C. , and Wiener , N. 1. Fourier transforms in the complex domain . Amer . Math . Soc .
Math . Soc . 39 , 259-260 ( 1933 ) . 3 . Some theorems on orthogonal functions . Studia Math . 3 , 226-238 ( 1931 ) . Paley , R. E. A. C. , and Wiener , N. 1. Fourier transforms in the complex domain . Amer . Math . Soc .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
The VitaliHahnSaks Theorem and Spaces of Measures | 7 |
B Topological Preliminaries | 10 |
Copyright | |
91 other sections not shown
Other editions - View all
Common terms and phrases
Akad algebra Amer analytic applied arbitrary assumed B-space Banach Banach spaces bounded called clear closed closure complex condition Consequently contains continuous functions converges Corollary defined DEFINITION denote dense determined differential disjoint element equation equivalent everywhere Exercise exists extension field finite follows formula function f given Hence Hilbert space implies integral interval isomorphism Lebesgue Lemma limit linear functional linear operator linear space linear topological space Math means measure space metric space neighborhood norm open set operator problem Proc projection Proof properties proved range reflexive respect Russian satisfies scalar seen semi-group separable sequence set function Show shown statement subset subspace sufficient Suppose Theorem theory topology u-measurable uniform uniformly unique unit sphere valued vector weak weakly compact zero