Linear Operators, Part 1 |
From inside the book
Results 1-3 of 37
Page 777
Doklady Akad . Nauk SSSR ( N. S. ) 30 , 484-488 ( 1941 ) . 7. Infinite J - matrices
and a matrix moment problem . Doklady Akad . Nauk SSSR ( N. S. ) 69 , 125–128
( 1949 ) . ( Russian ) Math . Rev. 11 , 670 ( 1950 ) . 8 . On the trace formula in ...
Doklady Akad . Nauk SSSR ( N. S. ) 30 , 484-488 ( 1941 ) . 7. Infinite J - matrices
and a matrix moment problem . Doklady Akad . Nauk SSSR ( N. S. ) 69 , 125–128
( 1949 ) . ( Russian ) Math . Rev. 11 , 670 ( 1950 ) . 8 . On the trace formula in ...
Page 798
Doklady Akad . Nauk SSSR ( N. S. ) 36 , 227-230 ( 1942 ) . 2 . On normed K -
spaces . Doklady Akad . Nauk SSSR ... Doklady Akad . Nauk SSSR ( N. S. ) 49 , 8
–11 ( 1945 ) . 4 . On the decomposition of K - spaces into elementary spaces .
Doklady Akad . Nauk SSSR ( N. S. ) 36 , 227-230 ( 1942 ) . 2 . On normed K -
spaces . Doklady Akad . Nauk SSSR ... Doklady Akad . Nauk SSSR ( N. S. ) 49 , 8
–11 ( 1945 ) . 4 . On the decomposition of K - spaces into elementary spaces .
Page 810
Doklady Akad . Nauk SSSR ( N. S. ) 28 , 199-202 ( 1940 ) . 3 . Weak
compactness in Banach spaces . Studia Math . ... A. ( see Kostyučenko , A. )
Slobodyanskii , M. G. 1. On estimates for the eigenvalues of a self - adjoint
operator . Akad .
Doklady Akad . Nauk SSSR ( N. S. ) 28 , 199-202 ( 1940 ) . 3 . Weak
compactness in Banach spaces . Studia Math . ... A. ( see Kostyučenko , A. )
Slobodyanskii , M. G. 1. On estimates for the eigenvalues of a self - adjoint
operator . Akad .
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
Preliminary Concepts | 1 |
The VitaliHahnSaks Theorem and Spaces of Measures | 7 |
B Topological Preliminaries | 10 |
Copyright | |
87 other sections not shown
Other editions - View all
Common terms and phrases
Akad algebra Amer analytic applied arbitrary assumed B-space Banach Banach spaces bounded called clear closed complex Consequently contains converges convex Corollary defined DEFINITION denote dense determined differential dimensional disjoint domain element equation equivalent everywhere Exercise exists extension field finite follows function defined function f given Hence Hilbert space identity implies inequality integral interval isomorphism Lebesgue Lemma limit linear functional linear operator linear space Math measure space metric space neighborhood norm open set positive measure problem projection Proof properties proved range reflexive representation respect Russian satisfies scalar seen separable sequence set function Show shown sphere statement subset Suppose Theorem theory topological space topology u-measurable uniform uniformly unique unit valued vector weak weakly compact zero